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In this article, we solve a three-dimensional problem concerning the effect of aniso- 
tropy on the stress concentration on the surface of a narrow crack in orthotropic and trans- 
versely isotropic elastic media located in a uniform external field. By a narrow crack, we 
mean an elliposoidal cavity characterized by two small (but finite) parameters. Explicit 
expressions are obtained for the stresses on the surface of the crack in relation to the 
elastic constants of the medium and is a normal to the surface for different external fields. 
It is established that anisotropy of the medium produces quantitative but not qualitative 
changes in the stress distribution on the crack. For example, anisotropy allows the stress 
maximum to be shifted away from the edge of the crack when the material is subjected to 
uniaxial tension. We determine the conditions that must be satisfied by the elastic con- 
stants of the medium for such a shift to occur. We also calculate the coordinates of the 
points of different maxima and the values of the maximum stresses. We establish the condi- 
tions under which the stresses in the ends of the crack will be greater than the stresses 
at the vertices of the middle section. Such results are basically impossible to obtain by 
solving the corresponding two-dimensional problem. 

In our study, we make use of the general solution given in [i] for the problem of the 
stress distribution on the surface of an ellipsoidal cavity. 

i. We will examine an ellipsoidal crack in an elastic medium under the influence of a 
uniform external field o0~. We rigidly connect the system of coordinates x~(~ = i, 2, 3) 
with the semi-axes ai, a 2, a s of the ellipsoid and we introduce the dimensionless parameters 

= a2ai -i, ~ = asa2 -i The case ~ << i, ~ N 1 corresponds to a needle, the case ~ ~ i, 
<< 1 corresponds to a crack, and the case ~ << i, ~ << 1 corresponds to a narrow crack. 

We will obtain the solution for a narrow crack from the solution for a needle [2], having 
expanded it in the small parameter $ and having limited ourselves to the principal terms of 

the expansion. 

The stresses on the surface of an arbitrary ellipsoidal cavity are found from the 

formulas [i] 

qal~ (n) ---- B c*~xu (n) I;-' ~0 
�9 ~ ; ' . ~ •  , 

B ~tsx~ (n) = c ~m'~' - -  c ~ ' ~ K •  ~ (n) c "~'~". 
) 

Here, hi= (n i, n 2, n s) is a unit normal to the surface of the ellipsoid; ce~k~ is the tensor 
of the elastic constants of the medium; B~Kp is a constant tensor which is the inverse of 
B%~KP. For a needle, the latter has the form [2] 

f B (% O) d(p B=Bo+O(~"ln~.) ,  B o ~ ?  cos29+~2sin~ T' 
0 

( i . i )  

The components of the tensor B(n) in the principal sections of an ellipsoid were presented 
in [2] for an orthotropic medium, while the components of K(n) over the entire surface of 
the ellipsoid were given in [3]. In order to pass to the limit for a narrow crack, in (i.i) 
we examine the function 
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It can be shown that at ~ + 0, @ + ~/2 f(@, ~) + 6(@ - ~/2), where 6(@) is the Dirac delta 
function. Thus, we write the expansion of f(@, g) in the small parameter $ as 

/ (9 ,  ~) = 5(q~ - -  x/2) + ~ cos2qo + 0(~2). 

We obtain the expansion of the tensor B in ~ from (I.i) after we insert this equation 
into the expansion of f(@, ~) and regularize the integrals [4]: 

= R00 + ~Bo, L o(~_t ;:~ In ~), Boo = /~(~/2, 0), 
R/2 

Bo, = ~ [ iB(,-r, o) - ~ (~/2, o)i cos---- ~ .  
0 

Thus, determination of the stresses on the surface of the crack reduces to finding 
single integrals and inverting the tensor B. 

2. We will assume that the external medium is orthotropic and that the axes of elastic 
symmetry of the medium coincide with the axes of the ellipsoid. Omitting the details of the 
calculation and the inversion of B, we present the components of the tensor B -I In the 
given case, we retain two principal terms of the expansion in the small parameter $: 

Bii~ = A I ~ A  - 1  (o: --- l ,  2 ,  3 ) ,  ]3~zz  ., = A2~A -L ,  

~:~ : A~'  (A,~A,:,~ -~ _ 1,-~,d. 
B-i ~ - l L A - 1  3333 = ~ II + A,~3A - ~ ,  B s ~  = ( 4 % 6 ) - '  

-1 + t ) ,  t3 -~ (4'~A,,) - 'L (~ - '  + 0 ,  

= - - ,  = - - - - - ~  -Jr- 21~, L = kt%.~. 
V C33 C33C44 . 

(2.1) 
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= -~ = 02323; ---- C 313: ----- c:2Z2; 5, A~ are the Here c~ c ~  (~, ~ I, 2, 3); c~ c55 ; c6s 
determinant and the algebraic complements of the elements ceB of the matrix lica61; (a, [3 = i, 

2, 3); k and s are anisotropic parameters analogous to those-introduced in [5] for plane 
problems. 

The behavior of the stresses will be studied in the local coordinate system x a' (a' = 
i, 2, 3) with the axis x ~' directed along a normal to the surface [6]. By virtue of the 

equilibrium conditions, in the new axes the only nontrivial stresses will be be o ~'~' = o~, 
o 2,2, = o2 and o z'2' = x. Meanwhile, o~ and o 2 in sections nx = 0 and n 2 = 0 are directed 
perpendicular to the plane and along the contour of the section on the edge of the crack. 
They have the opposite direction in the section na = 0. 

Due to the cumbersome nature of the general expressions for oz, o2, and x, we will 
examine only the singular components of these stresses along the principal sections of the 
crack. In the section nz = 0 we have 

O" 1 . :  - -  ( ~ A n ) - I L q ,  I, r tzo o - -  . , 

- -  --i :3. 
~., = - -  , J n p : o ] T : a : ,  "r := ( g Y c ~ % ~ )  ~:n,_ao , ( 2 . 2 )  

in the section n 2 = 0 

= - , , , < , 0  - n , % %  ] 
- -  ~ :  , - - :  23.  

a., = A : ~ p . . , q ~ ' ( h ,  : - (~AH) L:p~Vo , 
( 2 . 3 )  

and in the section n 3 = 0 

Here 

- -1  33 - - :  
~ l = - - ( ~ A n )  L q : 3 % ,  a2 = p q , ~  ~ l -  

= - ( 

. : O o o 

p ,  ~ ~  
= ._ -- . n ~ n ~ l  

The expressions for P2, r]2, ~2 and p~, qs, ~3 are obtained from Pl, 
tions of indices 1 +-+ 2, 4 +-+ 5 and 1 +-+ 3, 4 +-+ 6. 

B(n I 

(2 .4)  

(2 .5)  

q l ,  ~ 1  by the substitu- 

We also determine the stresses at the tips of the crack A(n I = I, n 2 = n 3 = 0) and 
= n~ = 0, n 2 = i) (there are no singular stresses at the tip C(n I = n 2 = O, n3 = i): 

--i 033 
o ,  ( A )  = - -  A , : 3 A ~ ' o  2 ( A )  = - -  L (~c , ,A~ , )  Ae3 'o �9 

(~c~2A~:) ~,~0 . ( 2 . 6 )  

We find from this that the stresses in the end A in an anisotropic medium (in contrast to 
an isotropic medium) may be greater than at the lateral point B. Thus, 0!(A) > of(B) and 
02(A) > 02(B) if the following conditions are satisfied 

2 2 cs>~ (c::, + c>.~) > c1>. (cllc~3 c>_>.c19, c~Lc2~ > c>2c13. 

It should be noted that the given result is basically impossible to obtain from the 
solution of the plane problem.* 

3. We will study the qualitative effect of anisotropy of the medium on the behavior of 
the stresses. Analyzing Eqs. (2.2)-(2.5), we find that in an orthotropic medium in uniaxial 
tension o~ 3 the maximum of the stresses oz, o~ may be displaced from the edge of the crack. 
The contrasts with the isotropic case [6], in which the maximum is found on the edge. In 
the section n 2 = 0, the stress o 2 has a maximum value o~ at the point n~ < 1 if the follow- 
ing relation is satisfied for the elastic constants of the medium 

*The solution of the plane problem corresponds to the values of the stresses in the section 
n: = 0, where the ends have almost no effect. 
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c55>5~2(c  u + 2c~)-h 
(3.1) 

Here 

I~I VC33C5~ [(Cn -}- c33 ~- 2C13 ) C~5 ~] , 

~* = L [  - 1  [ Ao,~eL ~ 2 (013 -4- ' / -  - -  _ - ~  - '  ( 3 . 2 )  
[_ ~' - -  C33 ) V" 2 vC33{C'11-~- C33 + '-,)C13) L~22g'55 ] �9 

The f o l l o w i n g  cond i t ion  i s  s u f f i c i e n t  f o r  t he  maximum o f  o z to  be s h i f t e d  f rom the  edge o f  
the crack 

c5~ >A22A2~(cu Ax2@ 2c,3A23) -1. ( 3 . 3 )  

In the section n I = 0, similar relations are obtained from (3.1)-(3.3) by the substitution 
of indices 2 ~-+ 1 and 5 *-+ 4. 

In contrast to the case of an isotropic medium, on the edge of a crack in an ortho- 
tropic medium the singular stresses depend on the coordinates of the given point. Meanwhile, 
the maxima of o I and 02 may be shifted along the edge from the tips~ The maximum of o I is 
displaced from the end A when 

c6n > A23A33[cll(Al,~ @ A23) + 2c,3A2,~1-'. 

If the external field is pure shear o~ 3, then the maximum (with respect to modulus) 
values of 01 and 02 in the section n I = 0 are displaced from the edge of the crack at point 
n~ under the condition c~6 > 2c55. Here, 

. : _  = _ _ +  _ = - 

As in the isotropic case, in the section n 2 = 0 we see the stress "bump effect" [6]. 

4. We will study the behavior of the stresses on the a narrow crack in a transversely 
isotropic medium with the elastic constants Ei, vi, G (i = i, 2) in relation to the location 
of the axis of elastic symmetry of the medium. The relation between the elastic constants 
c~$ can be obtained from Hooke's law [5]. The anisotropy parameters k and s for a medium 
with its symmetry axis directed along x 3 take the form 

•//'9--v• V E, 2vo E, 

For the axes of symmetry directed along x 2 and x z, k = k~ l, ~ = ~0ko 1, and k = 1, s = 2. 

We find from Eqs. (2.2)-(2.5) that for the case of uniaxial tension 083 in the sections 
of the crack lying in the planes of isotropy of the medium, the behavior of the stresses is 
the same as in an isotropic medium: the maximum is reached at points of the edge, and the 
stresses on the edge are constant. 

For the sections passing through the axis of elastic symmetry, the conditions under 
which the maxima of o z and 02 are displaced in tension 083 are shown in Table i. It is 
evident from the table that the qualitative pattern of behavior of the stresses changes with 
an increase in G (a decrease in K = EI[2G(I + vz)]-l). 

An analysis of the results and the calculations showed that the shift of the maximum 
stresses away from the crack edge is most pronounced when the axis of elastic symmetry of 
the medium is directed perpendicular to the plane of the crack. Here, the magnitude of the 
maximum and its location depend to a significant extent on the shear modulus G: with an 
increase in G, the difference between the maximum value and its value on the edge increases, 
while the maximum point is displaced from the edge. 

The stresses at the end of the crack become greater than the stresses at the tip of its 
middle section only when the axis of elastic symmetry of the medium passes through the plane 
of the crack. For a symmetry axis directed along x l, the stresses oi(A) > oi(B), i = i, 2 
if the following inequalities are satisfied 
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2 E,v, > E f t '  2 [I @ v l ( v  2 - -  v,)], Ely 1 > E._,v;. 

The signs of the inequalities are reversed for the symmetry axis x 2. 

We can use (2.6) to obtain conditions by which the stress-concentration factor on a 
crack in an anisotropic medium becomes greater than in an isotropic medium. In particular, 
for a transversely isotropic medium with the symmetry axis x 2, this is seen at s > 2 (for 
example, it is seen for glass-reinforced plastics). 

If the external field is pure shear o~ 3, then in the sections passing through the axis 
of elastic symmetry the maxima of the stresses 01 and o= may be displaced from the edge of 
the crack - as in uniaxial tension. For media with axes of elastic symmetry directed along 
x 2 and x3, in the section n I = 0 the shift occurs when ~ < 0.5 and ~ > 2, respectively. In 
the section n 2 = 0, the "bump effect" is seen for any direction of the axis of elastic 
symmetry. 

Thus, the results obtained here show when it is expedient to use a three-dimensional 
model and allow for anisotropy of the medium in the solution of specific problems. 
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